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Abstract

Studies are made on the elastic behaviour of laminated rectangular thin plates on elastic foundations with
combined lateral and compressive in-plane forces. The von Kármán’s large deflection equations for
generally laminated elastic plates are derived in terms of stress function and deflection function. A
deflection function satisfying the geometric boundary conditions is assumed and a stress function is then
obtained after solving the compatibility equation. The modified Galerkin’s method is applied to the
governing nonlinear partial differential equation to obtain the nonlinear ordinary differential equation of
motion (modal equation). Procedure for exact integration of the modal equation is described. Numerical
results of simply supported as well as clamped square plates are presented. It is found that the nonlinear
frequency increases with the amplitude for the applied lateral and compressive inplane forces. Analytical
expressions for the constants in the modal equation are provided to use for any lay-up sequence.
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1. Introduction

Laminated composite plates and shells are being used in aerospace and other engineering
applications as lightweight high-strength structural components. Two types of nonlinearities
are most commonly encountered in plate problems. The geometric nonlinearity arises due
to large deformation and material nonlinearity is used to deal with nonlinear material
having stress–strain behavior that is not linear. For nonlinear analysis of thin laminated
anisotropic plates, the governing equations consist of a system of nonlinear partial diffe-
rential equations of eighth order in terms of three displacement components (u, v, and w)
or in terms of the transverse deflection (w) and force function (f). The nonlinear partial
equations governing composite laminates of arbitrary geometries and boundary conditions
cannot be solved exactly. Approximate analytical solutions to the large–deflection theory (in
von Kármán sense) of laminated composite plates were obtained by utilizing Rayleigh–Ritz
method, Galerkin method, perturbation method, and the double-series method [1–15]. The
application of orthotropic plate structures as basis for nuclear reactors, aircraft runways,
building foundation slabs, indoor sports, floors etc. is becoming wide spread. Therefore, the
study of the nonlinear analysis of thin laminated rectangular plates resting on elastic
foundations is of importance in the optimum design of these structures. The use of large finite
element programs, which are capable of handling virtually any degree of complexity, is
cumbersome, costly, and time consuming. It is preferable to use continuum methods, if closed-
form solution methods for such a system are not possible. Simple continuum solution methods
can provide not only a check against the computer finite element model, but also a means by
which the effect of a parameter change on a system can be readily gauged, which is useful in the
design process.

This paper examines the large-amplitude vibration of clamped as well as simply supported
laminated thin rectangular plates on elastic foundations with combined lateral and compressive
in-plane forces. The von Kármán’s large deflection equations for generally laminated elastic plates
are derived in terms of stress function and deflection function. A deflection function satisfying the
geometric boundary conditions is assumed and a stress function is then obtained after solving the
compatibility equation. The modified Galerkin’s method is applied to the governing nonlinear
partial differential equation to obtain the nonlinear ordinary differential equation of motion
(modal equation). Procedure for exact integration of the equation of motion is described.
Analytical expressions for the constants in the equation of motion are provided to use for any lay-
up sequence. It is found that the nonlinear frequency increases with the amplitude for the applied
lateral and compressive in-plane forces.
2. Formulation

The governing equations are based on von Kármán’s elastic thin plate theory assumptions.
Three additional assumptions are added. First, there is no slip between the adjacent layers of the
laminated plate. Second, rotatory inertia and transverse shear deformation effects are neglected.
Third, kinematic relations, ðqu=qxÞ2 and ðqv=qyÞ2 are neglected as compared with ðqw=qxÞ2 and
ðqw=qyÞ2 terms.
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A thin rectangular plate of length a in the x direction, width b in the y direction and
thickness h, in the z direction is considered. The mid surface of the un-deformed plate, which
contains the x- and y-axis, is in the reference plane (z ¼ 0). The plate is thin (i.e., h5a, h5b) and
it is constructed of an arbitrary number of anisotropic layers of arbitrary arrangement
and thickness. Stress resultants and moments provide a simple means of dealing with laminated
behavior.

Nonlinear equations of motion of generally laminated plates are
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þ
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qy
¼ 0, (1)
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þ
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þ
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where ri and hi are the density and thickness of the ith layer,

N

M

� �
¼

A B

B D

� �
�

w

( )
. (4)

The components in the matrices of the stress and moment resultants, viz., N ¼ fNx;Ny;Nxyg
T

and M ¼ fMx;My;Mxyg
T are defined as

ðNk;MkÞ ¼

Zh=2
�h=2

ð1; zÞsk dz ðk ¼ x; y;xyÞ.

Nx; Ny; Nxy are membrane forces per unit length, Mx; My; Mxy are the bending and twisting
moments per unit length. The elements Aij ; Bij and Dij (i; j ¼ 1; 2; 6) in the 3� 3 symmetric
matrices of A, B, and D in Eq. (4) are defined as

ðAij ;Bij ;DijÞ ¼

Zh=2
�h=2

ð1; z; z2ÞQij dz ði; j ¼ 1; 2; 6Þ.

The elements Aij ; Bij; and Dij ; are, respectively, the membrane rigidities, coupling rigidities, and
flexural rigidities of the plate. Qij are the reduced stiffness coefficients, which can be related to the
more familiar engineering moduli by s ¼ fQijg�: The components in the matrices of in-plane stress
and strains are s ¼ fsx; sy;sxyg

T and � ¼ f�x; �y; �xyg
T: The matrices of strains (�) and curvature
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changes (w) are written by considering von Kármán type of geometric nonlinearity, as

� ¼

�x

�y

�xy

8><
>:

9>=
>; ¼

qu

qx
þ

1

2

qw

qx

� �2

qv

qy
þ

1

2

qw

qy

� �2

qu

qy
þ

qv

qx
þ

qw

qx

qw

qy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

, (5)
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wxy
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>:
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2
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qx qy
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9>>>>>>>>=
>>>>>>>>;

, (6)

u, v, w are the displacements at the reference plane (z ¼ 0). �x; �y; �xy are the reference surface
strains. wx; wy; wxy are the curvature changes.

Eq. (4) is rewritten as

�

M

� �
¼

A	 B	

�ðB	Þ
T D	

" #
N

k

� �
, (7)

where ½A	� ¼ ½A��1; ½B	� ¼ �½A��1½B�; and ½D	� ¼ ½D� þ ½B�½B	�:
The Airy stress function j; which satisfies Eqs. (1) and (2) is defined by

Nx ¼
q2j
qy2

, (8a)

Ny ¼
q2j
qx2

, (8b)

Nxy ¼ �
q2j
qx qy

. (8c)

In general, there are two types of foundations. The ‘‘attached foundation’’, in which the plate
cannot separate from the elastic medium and the intensity of reaction from the medium is
proportional to the deflection of the plate whether it buckles into or away from the foundation.
The reaction, when expressed as force per unit area per unit deflection, is the ‘‘modulus of
foundation’’. The second type of foundation is the ‘‘detached foundation’’. When the plate
buckles into waves, the deflection in the opposite direction causes the plate to pull away from the
foundation without any concomitant reaction. In both these conditions of support, the
assumption that there is a direct linear relationship between the deflection at any point and the
reaction of the medium at that point is of course the simplest that can be made. It is known as
Winkler-type foundation. The elastic foundation introduces a transverse distributed force on the
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plate given by

qef ¼ � kw þ k1w3 � g
q2w

qx2
� g

q2w

qy2

� �
, (9a)

where k is the Winkler foundation parameter, k1 is the nonlinear Winkler foundation parameter
and g is the shear parameter of Pasternak model foundation.

The transverse load qðx; yÞ is defined as

qðx; yÞ ¼ qmaxf ðx; yÞ, (9b)

where qmax is the maximum load and jf ðx; yÞjp1; 8ðx; yÞ inside the boundary of the plate. In the
present analysis, the problems are solved for the case of uniformly distributed transverse load (i.e.,
f ðx; yÞ ¼ 1).

The compatibility equation is derived from relation (5) as

q2�x

qy2
þ
q2�y

qx2
�

q2�xy

qx qy
¼

q2w

qx qy

� �2

�
q2w

qx2

q2w

qy2
. (10)

Using Eqs. (7)–(9) in Eqs. (3) and (10), one obtains

X
rihi

q2w

qt2
þ L1ðwÞ þ L3ðjÞ � Lðj;wÞ � qmax þ kw þ k1w3 � g

q2w

qx2
� g

q2w

qy2

� �
¼ 0, (11)

L2ðjÞ � L3ðwÞ �
q2w

qx qy

� �2

þ
q2w

qx2

q2w

q2y
¼ 0, (12)

where the differential operators are
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q4
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66Þ

q4
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qxqy3
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22

q4
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12

q4
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,

Lðf;wÞ ¼
q2f
qy2

q2w

qx2
þ

q2f
qx2

q2w

qy2
� 2

q2f
qx qy

q2w

qx qy
.

Therefore, Eqs. (11) and (12) are two coupled governing equations of arbitrarily laminated thin
plates on elastic foundations.
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3. Analysis

The large-amplitude vibrations of simply supported and clamped anisotropic rectangular plates
are examined here by applying the Galerkin’s method.

Boundary conditions for simply supported rectangular plates are

w ¼ 0; Mx ¼ 0 at x ¼ 0; a, (13)

w ¼ 0; My ¼ 0 at y ¼ 0; b. (14)

For clamped plates the boundary conditions are

w ¼ 0;
qw

qx
¼ 0 at x ¼ 0; a, (15)

w ¼ 0;
qw

qy
¼ 0 at y ¼ 0; b. (16)

The in-plane boundary conditions areZa

0

ðNyÞy¼0;b dx ¼ �Py, (17a)

Za

0

ðNxyÞy¼0;b dx ¼ 0, (17b)

Zb

0

ðNxÞx¼0;a dy ¼ �Px, (17c)

Zb

0

ðNxyÞx¼0;a dy ¼ 0. (17d)

Here Px and Py are compressive loads applied along x and y directions, respectively.
The system of equations (11) and (12) in terms of the transverse deflection (w) and force

function (j), are to be solved in conjunction with the boundary conditions (13)–(17). A deflection
function (for w) satisfying the geometric boundary conditions of the plate is assumed. A stress
function (j) is then obtained from the compatibility equation (12). Galerkin’s method is applied
to the governing nonlinear partial differential equation to yield a second-order nonlinear
differential equation of motion in time variable. The details of the solution of the problem are
briefly described below.

The transverse supporting conditions given in (13)–(16) are satisfied by assuming the deflection
functions of the laminate corresponding to the (m; n) in the separable form as

w ¼ W mnðtÞ sinðamxÞ sinðbnyÞ (18)

for simply supported boundary conditions, and

w ¼ W mnðtÞsin
2
ðamxÞsin2

ðbnyÞ, (19)
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for clamped boundary conditions. Here am ¼ mp=a; bn ¼ np=b; m and n are the axial and
transverse wave numbers, respectively.

Substituting the transverse deflection, w into Eq. (12), and solving utilizing the in-plane
boundary conditions, the stress function (j) is obtained as

j ¼ W mnj1ðx; yÞ þ W 2
mnj2ðx; yÞ �

1

2

Pxy2

b
þ

Pyx2

a

� �
. (20)

The expressions for the functions j1 and j2 are given in Appendix A.
Upon substitution of w and j into Eqs. (13) and (14), the force boundary conditions can not be

satisfied when B	 does not equal zero. As in Ref. [7], the modified Galerkin’s method is adopted
here wherein the residues on boundaries are minimized. In the case of simply supported
rectangular plates assuming w̄ ¼ sin amx sin bny; the residual force and moment have the following
relation:

Za

0

Zb

0

LRðj;wÞw̄dx dy þ

Zb

0

Mx

qw̄

qx

� �
x¼0

dy þ

Zb

0

Mx

qw̄

qx

� �
x¼a

dy

þ

Za

0

My
qw̄

qy

� �
y¼0

dx þ

Za

0

My
qw̄

qy

� �
y¼b

dx ¼ 0, ð21Þ

where LRðj;wÞ is residual force.
Letting LNðj;wÞ ¼ LRðj;wÞ þ Lðj;wÞ; Eq. (11) then becomes

X
rihi

q2w

qt2
þ L1ðwÞ þ L3ðjÞ � LNðj;wÞ � qmax þ ðkw þ k1w3 � g

q2w

qx2
� g

q2w

qy2
Þ ¼ 0. (22)

Applying Galerkin’s method to Eq. (22), the modal equation is then obtained as

X
rihi

d2W mn

dt2
þ ða� apÞW mn þ bW 2

mn þ gW 3
mn � dqmax ¼ 0. (23)

Similar equation is obtained for the case of clamped rectangular plates by substituting w and j
into Eq. (11) and applying the Galerkin’s method. The constants a; ap; b; g; and d in the equation
of motion (23) for both simply supported rectangular plates and clamped rectangular plates are
defined in Appendix B.

In the present dynamic formulation, the load versus frequency curve (namely the eigencurve) of
the plate is essential for studying the stability of the equilibrium position of the plate as well as for
the large deflection (post-buckling) analysis of the plate. Stability loads are those loads at which
the eigencurve meets the load axis (the frequency, o ¼ 0).

Defining z ¼ W mn=h and t ¼ ot; the modal equation (23) is written in the form

X
rihio2€zþ ða� apÞzþ bhz2 þ gh2z3 ¼

dqmax

h
, (24)

where o is the nonlinear frequency and over-dot denotes differentiation with respect to t:
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3.1. Post-buckling load–deflection relation

Post-buckling load–deflection relation for the problem in the absence of transverse uniformly
distributed load (i.e., qmax ¼ 0) can be obtained from Eq. (24) by substituting o ¼ 0 as

Pxa2m
b

þ
Pyb

2
n

a
¼ Ca½1þ d1zþ d2z

2
�. (25)

For the case of simply supported plates the constant, C ¼ 1; whereas in the case of clamped
plates C ¼ 4=3: By neglecting the contribution of z and z2 terms in Eq. (25), the buckling load can
be determined using

Pxa2m
b

þ
Pyb

2
n

a
¼ Ca. (26)

Eq. (26) may be used to determine the onset of buckling under a number of different types of
loading. For example, when Py ¼ 0; critical axial buckling load corresponds to

Pxc ¼
Cab

a2m
. (27)

The corresponding expression may be derived when Px ¼ 0; for the transverse buckling load,

Pyc ¼
Caa

b2
n

. (28)

If the load Py; for example, is regarded as a constant preload, with only Px allowed to vary, the
corresponding form of Eq. (26) is

Pxc ¼ Ca�
Pyb

2
n

a

 !
b

a2m
. (29)

As would be expected, Eq. (29) shows tensile (�Py) to have a stabilizing effect, while
compressive Py is destabilizing. Alternatively, the load Py may be assumed to vary
proportionately with Px until buckling takes place, with

Px ¼ P; Py ¼ KbP (30)

in Eq. (26) gives, at the buckling

Pc ¼ Ca
a2m
b

þ
Kbb

2
n

a

� ��1

. (31)

Using Eqs. (25),(30) and (31), the load–deflection relation can be written in nondimensional
form as

P

Pc

¼ 1þ d1zþ d2z
2. (32)

Knowing the applied load (P) in the post-buckling range, Eq. (32) can be solved for z: Thus, the
unknown maximum deflection-to-thickness ratio corresponding to the post-buckling load can be
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determined. For the specified maximum deflection the post-buckling load can be determined
directly from Eq. (32).

3.2. Maximum transverse load–deflection relation

The maximum transverse load–deflection relation of the problem in the absence of compressive
loads (i.e., Px ¼ Py ¼ 0) can be obtained from Eq. (24) by substituting o ¼ 0 as

QNL

QLF

¼ zþ d1z
2
þ d2z

3, (33)

where the nonlinear load parameter, QNL ¼ qmaxb4=E22h4; and the linear load factor, QLF ¼

ab4=dE22h3: The load parameter QNL can be evaluated directly from Eq. (33) by specifying the
values of z: For the specified value of QNL; z can be obtained by solving the cubic equation (33).

3.3. Frequency–amplitude relation

The frequency–amplitude relation for the unloaded laminated thin rectangular plates on elastic
foundation is obtained here from the modal equation (24)

o2 €zþ o2
Lf ðzÞ ¼ 0, (34)

where the restoring force function, f ðzÞ ¼ zþ d1z
2
þ d2z

3
¼ 0; oL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=
P

rihi

p
; is the linear

frequency of the unloaded rectangular plate.
The initial conditions for Eq. (34) are

z ¼ zs; _z ¼ 0 at t ¼ 0. (35)

Here zs is the ratio of the maximum amplitude of the transverse deflection and the thickness of
the plate.

The restoring force function f ðzÞ in the equation of motion (34), is a cubic polynomial which is
of Duffing type or a combination of quadratic and cubic terms. If d1 ¼ 0; then f ðzÞ becomes an
odd function, and the magnitudes of maximum positive and negative amplitudes in the periodic
motion will be equal. In the case of mixed-parity (i.e., d1a0), f ðzÞ is a nonodd function and the
magnitudes of maximum positive and negative amplitudes in the periodic motion will be different.
Hence, for nonodd function f ðzÞ the behavior of oscillations is different for the positive and
negative amplitudes. That means the frequency values for the specified maximum positive and
negative amplitudes having the same magnitude, will be different.

The relationship between the maximum positive and negative amplitudes, viz. zþ and z�; can be
found by equating the potential energies in either position, i.e. from

IðzþÞ ¼ Iðz�Þ, (36)

where

IðxÞ ¼
Zx
0

f ðZÞdZ ¼
x2

2
1þ 2

3
d1xþ 1

2
d2x

2
� �

. (37)
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Multiplying Eq. (34) by dz=dt and integrating,

1
2
o2 dz

dt

� �2

þ o2
LfIðzÞ � Iðz�Þg ¼ 0. (38)

The initial conditions used while integrating Eq. (34) to obtain (38) are

z ¼ z�; _B ¼ 0 at t ¼ 0. (39)

The solution curve on the z2 _z plane is referred to as the integral curve or the phase trajectory.
In the periodic motion of the system, the solution curve on the z2 _z plane is a closed trajectory
[16]. If d1 ¼ 0; f ðzÞ is an odd function and IðxÞ is an even function. The solution curve of Eq. (38)
will be symmetric on z and _z axis. If d1a0; then f ðzÞ becomes an odd function. The solution curve
of Eq. (37) will be symmetric only on the z axis.

Integrating Eq. (38) from t ¼ 0 to p; one gets

oL

o
¼

1ffiffiffiffiffiffi
2p

p

Zzþ
z�

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðz�Þ � IðzÞ

p . (40)

For a specified maximum positive amplitude-to-thickness ratio zþ the corresponding maximum
negative amplitude-to-thickness ratio z� is obtained from Eq. (36) and vice versa. By substituting
z� and zþ in Eq. (40) the nonlinear frequency o is obtained. The integrand in Eq. (40) has poles at
the end of integration (i.e., at z ¼ z� and zþ), which may adversely affect the accuracy of an
integration rule. Hence, the integrand in Eq. (40), is modified by using

z ¼ z1 þ z2 cos 1
2
pð1þ xÞ

� �
. (41)

That eliminates the singularities and yields a form

o
oL

¼
1

2

Z1

�1

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 þ c1zþ c2z

2
p

0
@

1
A

�1

, (42)

where

c0 ¼ 1þ 4
3
d1z1 þ 1

2
d2ð3z

2
1 þ z22Þ; c1 ¼

2
3
d1 þ d2z1; c2 ¼

1
2
d2,

z1 ¼ 1
2
ðzþ þ z�Þ; z2 ¼ 1

2
ðzþ � z�Þ.

The negative amplitude-to-thickness ratio z� corresponding to the positive amplitude-to-
thickness ratio zþ obtained from Eq. (36) is

z� ¼
ðs1 þ s2 � a2Þ

a3
, (43)

where

s1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q3 þ r3

pq
; q ¼ a3a1 � a2

2; r ¼ 1
2
ð3a3a2a1 � a2

3a0Þ � a2
2,

a3 ¼ c2; a2 ¼
1
3

2
3
d1 þ a3zþ

� �
; a1 ¼

1
3
þ a2zþ and a0 ¼ 3a1zþ.

A 10-point Gaussian rule was adopted while evaluating the integral in Eq. (42).
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3.4. Frequency–static deflection relation

From the point of view of practical application, approximate methods of determination of the
fundamental mode of elastic plates could be helpful. Jones [17] examined the applicability of a
frequency-static deflection relation,

rho2
L

Wmax

qmax

� �
¼ C1ðffi 1:630Þ. (44)

For plates of various geometry and boundary conditions, this relation is obtained from the
expression for the fundamental frequency (oL) of a clamped elliptical plate [18], and the
maximum deflection (Wmax) of the same plate under a uniformly distributed load (qmax). Here, r is
the mass per unit area and h is the plate thickness. Jones cautioned that this relation may be
inappropriate if any portion of the plate boundary is freely supported. Maurizi et al. [19] have
made a comparative study of various existing expressions [17,19,20] to obtain the fundamental
frequency for the case of a clamped elliptical plate. Sundararajan [21] also presented a similar type
of relation. This relation is based on Rayleigh’s method. The fundamental mode of a rectangular
plate is approximated by the deflection functions of beams subjected to uniformly distributed
loads. He analyzed the plates considering all edges simply supported, two opposite edges simply
supported and the others clamped, and, two opposite edges simply supported with third edge
clamped and the fourth edge free. The values of the constant (C1) in Eq. (44) for these plate
configurations found by him are 1.723, 1.613, 1.667 and 1.978, respectively. The variation in the
constant values is mainly due to geometry of the plate and boundary conditions. Although the
simple approximate expression as suggested by Jones [17] and Sundararajn [21], are good
estimates for various plate configurations, there is no formal derivation of the frequency static
deflection relation for a plate of arbitrary shape and complex boundary conditions.
Radhakrishnan et al. [22] have examined the possibility of such frequency–static displacement
relations and proposed a methodology for estimating the fundamental frequency of plate through
its static deflections under a uniformly distributed load without the associated eigenvalue problem
being solved. They suggested to use the mode shape of the plate proportional to its static
deflection under uniformly distributed load, for evaluating the constant C1 and determining the
fundamental frequency (oL) from Eq. (44). Relation (44) is verified for isotropic plates. The
solutions for simply supported and clamped thin laminated rectangular plates presented in this
paper are verified with relation (44) by replacing rh as

P
rI hi; Wmax as W 11 and C1 as d: For

simply supported rectangular plates the constant, C1 ¼ 16=p2 (�1.6207), and for clamped case
C1 ¼ 16=9: The values of the constant are found to be in good agreement with those of
Sundararajan [21].

3.5. Nonlinear vibrations of initially stressed plates

The equation of motion for nonlinear vibrations of initially stressed plates from Eq. (24) is
written in the form

o
oL

� �2

€zþ 1�
P

Pc

� �
zþ d1z

2
þ d2z

3
¼

QNL

QLF

, (45)
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where P=Pc ¼ aP=a and QNL=QLF ¼ dqmax=ðahÞ: The initial conditions for Eq. (45) are the same
as those given in Eq. (35). In the present analysis, the applied compressive load (P) is less than the
buckling load (Pc) and the transverse uniformly distributed load (qmax) is for the amplitude ratio
(z0) less than the specified amplitude ratio (zs). The equation of motion (45) with the initial
condition (35), is solved numerically as in Section 3.3.
4. Results and discussion

This paper examines the elastic behavior of laminated rectangular thin plates with moderately
large deflection, post-buckling and nonlinear vibration. Numerical results of simply supported as
well as clamped rectangular plates are presented for the dimensionless constants of elastic
foundation parameters:

K ¼
ka4

D11
; G ¼

ga2

D11
and K1 ¼

k1a4h2

D11
.

Table 1 gives the comparison of buckling loads of clamped square plates made of different
materials without elastic foundations. The analytical results are found to be reasonably in good
agreement with test results [23]. For isotropic simply supported square plates without-elastic
foundations, Little [9] represented the transverse displacement (w) by nine double Fourier series
(which satisfies all the out-of-plane boundary conditions) and substituted into the von Kármán
compatibility equation for obtaining the force function (f). For the specified value of zs ¼ 1; the
nonlinear load parameter, QNL reported by Little [9] was 29.4, whereas the present analysis based
upon a one-mode Galerkin approximation gives the result from Eq. (33) as 29.52. For the
specified value of zs ¼ 2; Little reported the value of QNL as 99.4, whereas the present analysis
gives the result as 104.1. The mechanical properties in the unidirectional laminate assumed for
glass-epoxy material are E11=E22 ¼ 3; G12=E22 ¼ 0:5 and n12 ¼ 0:25: For the simply supported
unidirectional glass-epoxy square plate, the nonlinear load parameter QNL is 50 for zs ¼ 1:1315;
which is reported in Table 5.3 of the textbook/monograph of Chia [10] by considering the first
four terms in each of the truncated generalized Fourier series for f and w. Based upon a one-mode
Galerkin approximation, the present analysis yields the result of QNL for zs ¼ 1:1315 as 54.27.
These two approximate solutions are reasonably in good agreement with each other. Table 2 gives
the fundamental linear frequency (oL) of two layered cross-ply square plates.
Table 1

Comparison of buckling loads (Pxc) for clamped square plates of different materials (a ¼ b ¼ 254mm)

Material Moduli (GPa) Poission’s

ratio, n12
Thickness (mm) Buckling load, Pxc (KN)

E11 E12 G12 Test [23] Eq. (27)

Aluminum 72.4 72.4 27.2 0.33 3.23 95.6 94.2

Steel 200 200 76.9 0.30 3.20 222.4 248.8

Boron/epoxy 213.7 18.62 0.52 0.28 2.92 68.9 78.9

[0/90]5s 2.59 61.8 55.0

2.31 45.8 39.1
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Table 2

The fundamental linear frequency, OL � oLb2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

rihi=ðE22h3
Þ

q� �
of two layered cross-ply square plates

(K ¼ K1 ¼ G ¼ 0)

Material E11

E22

G12

E22

n12 Linear frequency, OL

Simply supported Clamped

Chia and Prabhakara [24] Present study Chia [10] Present study

Glass-epoxy 3 0.50 0.25 6.8143 6.8143 12.9760 13.3546

Boron-epoxy 10 0.33 0.30 7.5638 7.6153 15.7775 16.2055

Graphite-epoxy 40 0.50 0.25 11.1641 11.1640 24.0332 24.5454

Table 3

The constants in the equation of motion for a two-layered glass-epoxy cross-ply square plate on elastic foundations

(d1 ¼ 0)

Case Foundation parameters d2 bPc

E22h3

QLF OL ¼ oLb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
rihi=ðEZZh3

Þ

q
K K1 G

Simply supported square plate

1 0 0 0 0.5272 4.7048 28.64 6.8143

2 50 0 0 0.4456 5.5671 33.89 7.4125

3 50 0 25 0.1762 14.0778 85.71 11.7873

4 50 25 0 0.4891 5.5671 33.89 7.4125

5 50 25 50 0.1206 22.5884 137.52 14.9311

Clamped square plate

1 0 0 0 0.3054 24.0938 100.32 13.3546

2 50 0 0 0.2915 25.2436 105.11 13.6696

3 50 0 25 0.1822 40.3736 168.11 17.2873

4 50 25 0 0.3036 25.2436 105.11 13.6696

5 50 25 50 0.1381 55.5036 231.10 20.2694
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For a simply supported isotropic square plate, the constants in the equation of motion (34) are
d1 ¼ 0 and d2 ¼ 0:34125; which are found to be in good agreement with those from the
expressions of Yamaki [25]. For the maximum amplitude ratio, zs ¼ zþ ¼ 1 the frequency ratio
(o=oL) from the graphical result of Yamaki [25] gives 1.12, while the present analysis from
Eq. (42) gives 1.1197. For a clamped isotropic square plate, the constants in the equation of
motion (34) are d1 ¼ 0 and d2 ¼ 0:22736: The frequency ratio (o=oL) for the specified amplitude
ratio zs=z+=2, is found from Eq. (42) is 1.2925, whereas it is 1.2987 from the graphical results
of Yamaki [25]. Table 3 gives the constants in the equation of motion (34) for a two layered
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glass-epoxy cross-ply plate on elastic foundation. It is noted from the results in Table 4 that the
nonlinear frequency increases with the amplitude for the specified elastic foundation parameter.
Regarding the analysis for moderately large deflections of plates under uniformly distributed
transverse load, the load parameter increases with the maximum deflection-to-thickness ratio. It is
also noted from the post-buckling analysis results that the buckling load parameter increases with
the deflection for the specified elastic foundation parameters. Nonlinear vibration analysis of
initially stressed plates has been carried out considering the applied compressive load lower than
the critical load of the plate and the applied uniformly distributed transverse load lower than
100th of load for the specified maximum amplitude. Tables 5 and 6 give the analysis results. It is
noted that the frequency ratio (o=oL) decreases with increase in the applied compressive load,
whereas it increases with amplitude.

It should be noted that the solution of the problem is obtained by considering a single-mode
transverse deflection function, which satisfies exactly the geometric boundary conditions. Utilizing
this deflection function, the compatibility equation (12) is solved for the Airy stress function (j),
which exactly satisfies Eqs. (1) and (2). Using these functions in Eqs. (6)–(8) one can find many
Table 4

Nonlinear analysis results for a two-layered glass-epoxy cross-ply square plates on elastic foundations

Case Bs Simply supported Clamped

P=Pc

Eq. (32)

QNL=QLF

Eq. (33)

o=oL

Eq. (42)

P=Pc

Eq. (32)

QNL=QLF

Eq. (33)

o=oL

Eq. (42)

1 0.5 1.1318 0.5660 1.0481 1.0763 0.5382 1.0282

1.0 1.5272 1.5272 1.1793 1.3054 1.3054 1.1078

1.5 2.1863 3.2794 1.3683 1.6871 2.5306 1.2280

2.0 3.1089 6.2179 1.5940 2.2215 4.4430 1.3776

2 0.5 1.1114 0.5556 1.0408 1.0729 0.5363 1.0269

1.0 1.4456 1.4456 1.1536 1.2915 1.2915 1.1032

1.5 2.0025 3.0038 1.3185 1.6558 2.4837 1.2186

2.0 2.7823 5.5645 1.5181 2.1659 4.3317 1.3628

3 0.5 1.0441 0.5220 1.0164 1.0456 0.5227 1.0169

1.0 1.1762 1.1762 1.0637 1.1822 1.1822 1.0658

1.5 1.3965 2.0946 1.1378 1.4100 2.1151 1.1422

2.0 1.7048 3.4095 1.2333 1.7290 3.4579 1.2404

4 0.5 1.1223 0.5612 1.0447 1.0759 0.5379 1.0280

1.0 1.4891 1.4891 1.1674 1.3036 1.3036 1.1072

1.5 2.1005 3.1508 1.3453 1.6830 2.5243 1.2268

2.0 2.9565 5.9130 1.5591 2.2143 4.4281 1.3757

5 0.5 1.0301 0.5151 1.0112 1.0345 0.5173 1.0128

1.0 1.1206 1.1206 1.0441 1.1381 1.1381 1.0503

1.5 1.2712 1.9069 1.0964 1.3107 1.9660 1.1096

2.0 1.4822 2.9644 1.1652 1.5523 3.1046 1.1871
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Table 5

Frequency ratio (o=oL) for the specified maximum amplitude-to-thickness ratio (zþ) of initially stressed two-layered

glass-epoxy cross-ply square plates on elastic foundations without transverse distributed load (QNL=QLF ¼ 0)

zþ Compressive load ratio (P=Pc)

0.00 0.25 0.50 0.75 1.00

(a) Simply supported square plates

Case 1: K ¼ K1 ¼ G ¼ 0

0.5 1.0481 0.9211 0.7734 0.5896 0.3076

1.0 1.1793 1.0676 0.9424 0.7970 0.6152

1.5 1.3683 1.2726 1.1686 1.0537 0.9228

2.0 1.5940 1.5121 1.4250 1.3317 1.2303

Case 2: K ¼ 50; K1 ¼ 0; G ¼ 0

0.5 1.0408 0.9128 0.7636 0.5768 0.2828

1.0 1.1536 1.0392 0.9103 0.7590 0.5655

1.5 1.3185 1.2191 1.1103 0.9889 0.8483

2.0 1.5181 1.4320 1.3400 1.2405 1.3110

Case 3: K ¼ 50; K1 ¼ 0; G ¼ 25

0.5 1.0164 0.8849 0.7300 0.5319 0.1778

1.0 1.0637 0.9388 0.7944 0.6166 0.3556

1.5 1.1378 1.0217 0.8903 0.7352 0.5334

2.0 1.2333 1.1267 1.0086 0.8738 0.7113

Case 4: K ¼ 50; K1 ¼ 25; G ¼ 0

0.5 1.0447 0.9172 0.7688 0.5837 0.2963

1.0 1.1674 1.0544 0.9275 0.7795 0.5925

1.5 1.3453 1.2479 1.1418 1.0240 0.8888

2.0 1.5591 1.4753 1.3860 1.2900 1.1851

Case 5: K ¼ 50; K1 ¼ 25; G ¼ 50

0.5 1.0112 0.8790 0.7229 0.5220 0.1471

1.0 1.0441 0.9165 0.7680 0.5826 0.2942

1.5 1.0964 0.9755 0.8372 0.6705 0.4412

2.0 1.1652 1.0520 0.9248 0.7763 0.5883

(b) Clamped square plates

Case 1: K ¼ K1 ¼ G ¼ 0

0.5 1.0282 0.8984 0.7463 0.5539 0.2341

1.0 1.1078 0.9883 0.8521 0.6888 0.4682

1.5 1.2280 1.1210 1.0022 0.8664 0.7023

2.0 1.3776 1.2826 1.1795 1.0656 0.9364

Case 2: K ¼ 50; K1 ¼ 0; G ¼ 0

0.5 1.0269 0.8969 0.7446 0.5516 0.2287

1.0 1.1032 0.9831 0.8461 0.6814 0.4574

1.5 1.2186 1.1107 0.9908 0.8533 0.6861

2.0 1.3628 1.2667 1.1623 1.0467 0.9148

Case 3: K ¼ 50; K1 ¼ 0; G ¼ 25

0.5 1.0169 0.8855 0.7308 0.5329 0.1808

1.0 1.0658 0.9412 0.7972 0.6202 0.3617

K.G. Muthurajan et al. / Journal of Sound and Vibration 282 (2005) 949–969 963
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Table 5 (continued )

zþ Compressive load ratio (P=Pc)

0.00 0.25 0.50 0.75 1.00

1.5 1.1422 1.0265 0.8959 0.7419 0.5425

2.0 1.2404 1.1345 1.0172 0.8837 0.7233

Case 4: K ¼ 50; K1 ¼ 25; G ¼ 0

0.5 1.0280 0.8982 0.7461 0.5536 0.2334

1.0 1.1072 0.9877 0.8513 0.6878 0.4668

1.5 1.2268 1.1196 1.0007 0.8647 0.7002

2.0 1.3757 1.2805 1.1773 1.0632 0.9336

Case 5: K ¼ 50; K1 ¼ 25; G ¼ 50

0.5 1.0128 0.8808 0.7251 0.5252 0.1574

1.0 1.0503 0.9236 0.7764 0.5935 0.3148

1.5 1.1096 0.9903 0.8543 0.6916 0.4722

2.0 1.1871 1.0761 0.9520 0.8083 0.6296

Table 6

Frequency ratio (o=oL) for the specified maximum amplitude-to-thickness ratio (zþ) of initially stressed (P=Pc ¼ 0:5)
two layered glass-epoxy cross-ply clamped square plates on elastic foundations with uniformly distributed transverse

load

zþ Simply supported Clamped

z� QNL

QLF

o
oL

z� QNL

QLF

o
oL

Case 1: K ¼ K1 ¼ G ¼ 0

0.5 �0.4820 0.0057 0.7712 �0.4810 0.0054 0.7450

1.0 �0.9700 0.0153 0.9364 �0.9670 0.0131 0.8479

1.5 �1.4600 0.0328 1.1591 �1.4570 0.0253 0.9952

2.0 �1.9510 0.0622 1.4123 �1.9470 0.0444 1.1698

Case 2: K ¼ 50; K1 ¼ 0; G ¼ 0

0.5 �0.4820 0.0056 0.7617 �0.4810 0.0054 0.7433

1.0 �0.9690 0.0145 0.9049 �0.9670 0.0129 0.8420

1.5 �1.4590 0.0300 1.1017 �1.4560 0.0248 0.9839

2.0 �1.9500 0.0556 1.3283 �1.9470 0.0433 1.1529

Case 3: K ¼ 50; K1 ¼ 0; G ¼ 25

0.5 �0.4810 0.0052 0.7292 �0.4810 0.0052 0.7300

1.0 �0.9650 0.0118 0.7916 �0.9650 0.0118 0.7943

1.5 �1.4530 0.0209 0.8854 �1.4530 0.0212 0.8908

2.0 �1.9420 0.0341 1.0014 �1.9430 0.0346 1.0100

Case 4: K ¼ 50; K1 ¼ 25; G ¼ 0

0.5 �0.4820 0.0056 0.7668 �0.4810 0.0054 0.7448

1.0 �0.9690 0.0149 0.9218 �0.9670 0.0130 0.8471

K.G. Muthurajan et al. / Journal of Sound and Vibration 282 (2005) 949–969964
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Table 6 (continued )

zþ Simply supported Clamped

z� QNL

QLF

o
oL

z� QNL

QLF

o
oL

1.5 �1.4600 0.0315 1.1327 �1.4570 0.0252 0.9937

2.0 �1.9510 0.0591 1.3738 �1.9470 0.0443 1.1677

Case 5: K ¼ 50; K1 ¼ 25; G ¼ 50

0.5 �0.4810 0.0052 0.7223 �0.4810 0.0052 0.7245

1.0 �0.9640 0.0112 0.7660 �0.9640 0.0114 0.7741

1.5 �1.4500 0.0191 0.8334 �1.4510 0.0197 0.8501

2.0 �1.9390 0.0296 0.9192 �1.9400 0.0310 0.9459
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terms for strains (�x; �y; �xy) and the moment resultants (Mx; My; Mxy). The assumed transverse
deflection function (w) and the corresponding strains (�x; �y; �xy) exactly satisfy the compatibility
equation (10). The modal equation (23) is derived using these results in the equilibrium equation
and applying the modified Galerkin’s method. The results obtained from the exact integration of
the modal equation are found to be reasonably in good agreement with the other existing
approximate multi-mode solutions.
5. Concluding remarks

Studies are made on the elastic behavior of laminated thin square plates with moderately
large deflection, post-buckling and nonlinear vibration. The effects of foundation para-
meters and edge conditions are examined. In all the cases considered, the nonlinear frequency
increases with the amplitude and hardening type of nonlinearity is noted. Regarding the analysis
for moderately large deflections of laminated square plates under uniformly distributed trans-
verse load, the load parameter increases with the deflection. It is also noted from the post-
buckling analysis results that the buckling load parameter increases with the deflection for
the specified elastic foundations. Though numerical results presented in this paper are for
square plates, the formulation is general and applicable for generally laminated thin rectangular
plates.
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Appendix A

The expressions for the functions j1 and j2 in Eq. (20) are given below:
A.1. Simply supported rectangular plates

j1ðx; yÞ ¼ c1 sin amx sin bny þ c2 cos amx cos bny,

j2ðx; yÞ ¼ c3 cos 2amx þ c4 cos 2bny,

c1 ¼ ðc11c21 � c12c22Þ=ðc
2
11 � c2

12Þ; c2 ¼ ðc11c22 � c12c21Þ=ðc
2
11 � c2

12Þ,

c3 ¼ b2
n=ð32A	

22a
2
mÞ; c4 ¼ a2m=ð32A	

11b
2
nÞ,

c11 ¼ a4mA	
22 þ a2mb

2
nð2A	

12 þ A	
66Þ þ b4

nA	
11; c12 ¼ 2a3mbnA	

26 þ 2amb
3
nA	

16,

c21 ¼ a4mB	
21 þ a2mb

2
nðB

	
11 þ B	

22 � 2B	
66Þ þ b4

nB	
12; c22 ¼ a3mbnðB

	
61 � 2B	

26Þ þ amb
3
nðB

	
62 � 2B	

16Þ.

A.2. Clamped rectangular plates

j1ðx; yÞ ¼ c1 cos 2amx þ c2 cos 2bny þ c3 cos 2amx cos 2bny þ c4 sin 2amx sin 2bny,

j2ðx; yÞ ¼ c5 cos 2amx þ c6 cos 2bny þ c7 cos 4amx þ c8 cos 4bny

þ c9 cos 2amx cos 2bny þ c10 sin 2amx sin 2bny þ c11 cos 2amx cos 4bny

þ c12 sin 2amx sin 4bny þ c13 cos 4amx cos 2bny þ c14 sin 4amx sin 2bny,

c1 ¼ �
B	

21

4A	
22

; c2 ¼ �
B	

12

4A	
11

,

c3 ¼
c31c41 � c32c42

4ðc2
31 � c2

32Þ
; c4 ¼

c31c42 � c32c41

4ðc2
31 � c2

32Þ
; c5 ¼

1

32

b2
n

A	
22a2m

� �
,

c6 ¼
1

32

a2m
A	

11b
2
n

 !
; c7 ¼

�1

512

b2
n

A	
22a2m

� �
; c8 ¼

�1

512

a2m
A	

11b
2
n

 !
,

c9 ¼
�1

16

c31a
2
mb

2
n

c2
31 � c2

32

 !
; c10 ¼

1

16

c32a
2
mb

2
n

c2
31 � c2

32

 !
; c11 ¼

1

32

c71a
2
mb

2
n

c2
71 � c2

72

 !
,
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c12 ¼
�1

32

c72a
2
mb

2
n

c2
71 � c2

72

 !
; c13 ¼

1

32

c81a
2
mb

2
n

c2
81 � c2

82

 !
; c14 ¼

�1

32

c82a
2
mb

2
n

c2
81 � c2

82

 !
,

c31 ¼ a4mA	
22 þ a2mb

2
nð2A	

12 þ A	
66Þ þ b4

nA	
11; c32 ¼ 2a3mbnA	

26 þ 2amb
3
nA	

16,

c41 ¼ a4mB	
21 þ a2mb

2
nðB

	
11 þ B	

22 � 2B	
66Þ þ b4

nb
	
12; c42 ¼ a3mbnðB

	
61 � 2B	

26Þ þ amb
3
nðB

	
62 � 2B	

16Þ,

c71 ¼ a4mA	
22 þ 4a2mb

2
nð2A	

12 þ A	
66Þ þ 16b4

nA	
11; c72 ¼ 4a3mbnA	

26 þ 16amb
3
n,

c81 ¼ 16a4mA	
22 þ 4a2mb

2
nð2A	

12 þ A	
66Þ þ b4

nA	
11; c82 ¼ 16a3mbnA	

26 þ 4amb
3
nA	

16.

Appendix B

The constants ap; b; g; and d in the equation of motion (24) are given below:

B.1. Simply supported rectangular plates

a ¼ c0 þ c01 þ k þ gða2m þ b2
nÞ; ap ¼

Pxa2m
b

þ
Pyb

2
m

a
.

For m and n are odd : b ¼ �
8ambn

3ab

� �
4c1 þ

B	
21

A	
22

þ
B	

12

A	
11

� �
.

For m is even and n is odd : b ¼ �
2ambn

ab

� �
�B	

21

A	
22

þ
a2mB	

11

3b2
nA	

11

 !
.

For m is odd and n is even : b ¼ �
2ambn

ab

� �
�B	

12

A	
11

þ
b2

nB	
22

3a2mA	
22

� �
.

For m and n are even : b ¼ 0.

d ¼
16

mnp2
sin2 mp

2
sin2 np

2
; g ¼

1

16

a4m
A	

11

þ
b4

n

A	
22

� �
þ

9

16
k1,

c0 ¼ a4mD	
11 þ 2a2mb

2
nðD

	
12 þ 2D	

66Þ þ b4
nD	

22; c01 ¼
c11ðc

2
21 þ c2

22Þ � 2c12c21c22

c2
11 � c2

12

.
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B.2. Clamped rectangular plates

a ¼
16

9
c0 þ c01 þ

2B	2
21a

4
m

A	
22

þ
2B	2

12b
4
n

A	
11

� �
þ k þ 4

3
gða3m þ b2

nÞ,

ap ¼
3

4

Pxa2m
b

þ
Pyb

2
m

a

 !
; b ¼

�4

3
ða2mb

2
nÞ c02 þ

B	
21

A	
22

þ
B	

12

A	
11

� �
,

g ¼
17

144

a4m
A	

11

þ
b4

n

A	
22

� �
þ

2

9

a4mb
4
nc02

c2
02 � c2
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 !
þ

1

18

a4mb
4
nc71

c2
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